Cambridge IGCSE ${ }^{\circledR}$

ADDITIONAL MATHEMATICS
0606/02
Paper 2
For examination from 2020
SPECIMEN PAPER
2 hours

You must answer on the question paper.
No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 80 .
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Blank pages are indicated.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation
For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial Theorem

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n}
$$

where n is a positive integer and $\binom{n}{r}=\frac{n!}{(n-r)!r!}$

Arithmetic series

$$
\begin{gathered}
u_{n}=a+(n-1) d \\
S_{n}=\frac{1}{2} n(a+l)=\frac{1}{2} n\{2 a+(n-1) d\}
\end{gathered}
$$

Geometric series

$$
\begin{gathered}
u_{n}=a r^{n-1} \\
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad(r \neq 1) \\
S_{\infty}=\frac{a}{1-r} \quad(|r|<1)
\end{gathered}
$$

2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} b c \sin A
\end{gathered}
$$

1 Solve

$$
x y=3,
$$

$$
\begin{equation*}
x^{4} y^{5}=486 . \tag{3}
\end{equation*}
$$

2 (a) On the axes below, sketch the graph of $y=\frac{1}{5}(x-2)(x-4)(x+5)$, showing the coordinates of the points where the graph meets the coordinate axes.

(b) Explain why your sketch in part (a) can be used to solve $(x-2)(x-4)(x+5) \leqslant 0$.
(c) Hence solve $(x-2)(x-4)(x+5) \leqslant 0$.

3 Functions g and h are such that

$$
\begin{array}{ll}
\mathrm{g}(x)=2+4 \ln x & \text { for } x>0 \\
\mathrm{~h}(x)=x^{2}+4 & \text { for } x>0
\end{array}
$$

(a) Find g^{-1}, stating its domain and its range.
(b) Solve $\operatorname{gh}(x)=10$.
(c) Solve $\mathrm{g}^{\prime}(x)=\mathrm{h}^{\prime}(x)$.

4 On the axes below, sketch the graph of $y=2 \sin \frac{3}{2} x-1$ for $0^{\circ} \leqslant x \leqslant 180^{\circ}$, showing the coordinates of the points where the graph meets the coordinate axes.

5 (a) A 6-character password is to be chosen from the following 9 characters.

letters	A	B	E	F
numbers	5	8	9	
symbols	$*$	$\$$		

Each character may be used only once in any password.
Find the number of different 6-character passwords that may be chosen if
(i) there are no restrictions,
(ii) the password consists of 2 letters, 2 numbers and 2 symbols in that order,
(iii) the password must start and finish with a symbol.
(b) An examination consists of a section A, containing 10 short questions, and a section B containing 5 long questions. Candidates are required to answer 6 questions from section A and 3 questions from section B.

Find the number of different selections of questions that can be made if
(i) there are no further restrictions,
(ii) candidates must answer the first 2 questions in section A and the first question in section B .

6 A particle P travels in a straight line such that, $t \mathrm{~s}$ after passing through a fixed point O, its velocity $v \mathrm{~m} \mathrm{~s}^{-1}$ is given by $v=\left(\mathrm{e}^{\frac{t^{2}}{8}}-4\right)^{3}$.
(a) Find the speed of P at O.
(b) Find the value of t for which P is instantaneously at rest.
(c) Find the acceleration of P when $t=1$.

7 Variables x and y are such that when $\lg y$ is plotted against x^{2}, a straight line graph passing through the points $(1,0.73)$ and $(4,0.10)$ is obtained.
(a) Given that $y=A b^{x^{2}}$, find the value of each of the constants A and b.
(b) Find the value of y when $x=1.5$.
(c) Find the positive value of x when $y=2$.

The diagram shows a circle, centre O, radius $r \mathrm{~cm}$. The points A and B lie on the circle such that angle $A O B=2 \theta$ radians.
(a) Given that the perimeter of the shaded region is 20 cm , show that $r=\frac{10}{\theta+\sin \theta}$.
(b) Given that r and θ can vary, find the value of $\frac{\mathrm{d} r}{\mathrm{~d} \theta}$ when $\theta=\frac{\pi}{6}$.

In the diagram $\overrightarrow{A B}=4 \mathbf{a}, \overrightarrow{B C}=\mathbf{b}$ and $\overrightarrow{D C}=7 \mathbf{a}$. The lines $A C$ and $D B$ intersect at the point X. Find, in terms of \mathbf{a} and \mathbf{b},
(a) $\overrightarrow{D B}$,
(b) $\overrightarrow{D A}$.

Given that $\overrightarrow{A X}=\lambda \overrightarrow{A C}$ find, in terms of \mathbf{a}, \mathbf{b} and λ,
(c) $\overrightarrow{A X}$,
(d) $\overrightarrow{D X}$.

Given that $\overrightarrow{D X}=\mu \overrightarrow{D B}$,
(e) find the value of λ and of μ.

10 (a) (i) Sketch the graph of $y=\mathrm{e}^{x}-5$ on the axes below, showing the exact coordinates of any points where the graph cuts the coordinate axes.

(ii) Find the range of values of k for which the equation $\mathrm{e}^{x}-5=k$ has no solutions.
(b) Simplify $\log _{a} \sqrt{2}+\log _{a} 8+\log _{a}\left(\frac{1}{2}\right)$, giving your answer in the form $p \log _{a} 2$, where p is a
constant.
(c) Solve the equation $\log _{3} x-\log _{9} 4 x=1$.

11 (a) (i) Show that $\frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta-\sin \theta}=\sec ^{2} \theta$.
(ii) Hence solve $\frac{2 \operatorname{cosec} \phi}{\operatorname{cosec} \phi-\sin \phi}=8$ for $0^{\circ}<\phi<360^{\circ}$.
(b) Solve $\sqrt{3} \tan \left(x+\frac{\pi}{4}\right)=1$ for $0<x<2 \pi$, giving your answers in terms of π.

